
an approach to
sensocial gaming

Interaction Project summer term 2008

“klangpong”

Alexander Ewald, Johannes Freund,
Sebastian Gerhard and Dominic Szablewski

introduction 3

What means “crazy” for us? 3
Alternative Ideas 4
Battle Painting 4
Mechanical Parts 5
Audicolor 6

The Final idea 7

First Development & Research 7
Experimenting with sounds 8
First Content 9

Interaction & Interface 9

Interface 10
Interface part 1 — menu and tutorial 11
Interface part Part 2 — the game 12
Audio themes 12
Design concept 14
3D-Models 14

Technical Concept 16

Development Environment 16
Sound 16
Wiimote / Blue Tooth 17
Graphics 17
Networking 17
Code Structure 18
Class overview 19
Game_Demo 19
Game_Tutorial 20
Game_Network 20
Paddle 20
Puck 20
Controller 20
MainMenu 21
Utility classes 21

“ Construct a Crazy Machine, which the user
can run and use!”

The task, which we were assigned to, challenged our team of
four people to develop a crazy machine, which can be run
and used interactively by users. The machine should make
sense and should have a reasonable purpose – that was one
important criterion. Obviously, the most important feature
of the machine should be its possibilities for interaction: the
user must be able to interact with the machine in different
ways and with diverse actions; the steps of interaction and
the usage of the crazy machine should be recognized by the
user without a manual or a help function.

What means “crazy” for us?
While talking about our assignment, we faced the first chal-
lenge. What exactly does the term “crazy” mean? And what
is the subjective impression of the expression “crazy” for us
as a group?

We began to analyze the meaning of “crazy” during a
practical session for the Media Design 2 course, where Mr
Gilgen and Ms Söller-Eckert taught us various creative
techniques.
While working on a mind-map with the topic “crazy” and
using the technique of visual synectics, we discussed several
aspects and perspectives of “craziness”. The first things,
which came into our minds, were especially the negative
sides of being crazy: insanity, loony people, mental illness,
craziness in a dangerous and aggressive way or maniacs.
But after a while, we realized that “craziness” can also have
very positive aspects. We thought about great geniuses of
science, physics or creativity, who were crazy, but in an
ambitious, innovative, resourceful and world-shaking way.
Consequently, we discovered, what “crazy” really means
for us: being groundbreaking, unexpected and imaginative.

introduction

page 3/22

A look into the New Oxford American Dictionary after-
wards revealed an adequate definition of the word “crazy”:

crazy:	 	“	appearing	absurdly	out	of	place	or	in	an		unlikely	
position”.

We decided on the the “crazy” meaning “appearing ab-
surdly out of place”. Due to the fact that the our course is
titled “interface project” we ‘ve been looking for an idea
that describes and makes use of a crazy interface. An inter-
face you wouldn’t expect in the context it is used in. Or to
come up with an interface that allows communication and
interaction between users that are not able to do that with
“mainstream” machines.

Alternative Ideas

Battle Painting
Battle Painting was intended as a timebased two player fun
game. The goal of the game was to fill in the given time as
much as you can of a blank canvas with your color, to beat
your opponent. To extend the gameplay and make it more
fun to play, we also thought about Power Ups, like color-

introduction

page 4/22

The mind map we created during the lesson

bombs, paint buckets etc. To make the game more gripping,
we planned to have a Online Highscore, where you could
compete against others.

But finally we decided against this idea, because of the lim-
ited interaction possibilities.

Mechanical Parts
This idea was about an mechanical organism which a player
could build in a Petri dish.
The goal of the game was to collect as much „food“ as you
can, so your organism can be extended with further parts.
We thought of different parts as engine, mouth, and so on,
consistent of different materials, which the player could
combine to toss out the best combination. To garantuee a
long-term game experience, we had the idea to unlock new
parts for your organism.

We dropped the idea of Mechanical Parts, based on the fact,
that we discovered, Electronic Arts was working on a game
named „Spore“, which had quite a lot of similarities with
our idea.

alternative ideas

page 5/22

sketch of a mechanical organism

Audicolor
Audicolor was intended to be an interactive experience that
allowed the user to generate sound and visual effects using
nothing but his fingertips, using gestures like drawing on a
virtual canvas projected on a wall in front of the user. The
gestures and the lines which were drawn thereby, should
be analysed and sounds were intended to be generated after
them.
Because of this natural input-method the user had a rapid
access to the game and could play it without many experi-
ence with games or any type of interface.

Fascinated by a video-demonstration given by a MIT-
student, where he used a Wiimote to track the movement
of fingers, we tried to reproduce this technique. The video-
presentation as astarting point, we gathered a lot of infor-
mation about the needed hardware, software libraries for
Processing and so on. It took us quite a while, but it was
quite interesting to toss out the right configuration and to
puzzle with thiselectronic engineering part.

In the end the idea of „audicolor“ was dropped and we have
some electronic parts left. But the fun we had with this „ex-
periment“ outplays the misinvestment.

alternative ideas

page 6/22

conceptual sketch of “Audicolor”

The Final idea

Our final conceptional process, which led us to our final
product was driven by three basic ideas:

1. Design an interface you wouldn’t expect in the context it
is used in.

2. Shift the user/machine and user/user communication on
another level and allow a way of communication that is
not possible under “non-crazy” circumstances.

3. Due to the fact that the outcome of our project will be
more likely a game but not an application which serves a
certain purpose, we looked for a game principle that runs
nonlinear and thereby encourages the user to play it again
and again.

An audio project in the first semester, where we dealt with
acoustic visualisation of a “dream vs. reality” situation, led
us to the idea of a whole environment, which is tangible
entirely by sounds.

This process led us to “Klangpong”, an auditive interpreta-
tion of the 1960ies Arcade classic.

First Development & Research

The research we conducted revealed that there are games for
blind people and also games that are both playable by blind
and seeing people. Not only translations of existing games
but games that are developed explicitly as audiogames.
The only working audio-mod of a mainstream game is “au-
dio quake”. Quake is a first-person-shooter Quake, which
needs intense training both for seeing and visual impaired
people to succeed in the game. “Pure” audiogames are
mostly little challenging due to simple game concepts. Only
very few offer a multiplayer mode, which would make the
whole audio-gaming more interesting by letting blind and
seeing people interact.

A conclusion of our research was definitely that blind peo-
ple are mostly mistaken in terms of their ability to deal with

page 7/22

the world of the seeing people and particularly with techni-
cal devices.

In the next step, we analysed modern gaming consoles and
their concepts.

Gaming on gaming consoles has undergone a impressive de-
velopment in the last years. Nintendo, one of the veterans in
building gaming consoles and developing compelling games,
released their Wii and DS lite nearly two years ago. Both
machines are part of their “touch! generations” concept.
“touch! generations” is intended, as the name implies, to
address all ages and types of gamers. The main idea behind
is that the gamers don’t need you to play it for hours to suc-
ceed or to have broad experience in gaming.
But by using an intuitive controller-concept and custom-tai-
lored games, not by transferring titles from other platforms,
they get back to the core of gaming.

That’s were we intended to link our approach, but with the
extension to bring up a social gaming experience for seeing
and visually impaired gamers.

Experimenting with sounds

We tried to define different types of sounds that help to
elaborate the game and the various in-game situations.

a. abstract sounds
Sounds that can’t directly be identified as specific objects.
Like warnings and indications for statuses and so on.

b. concrete Sounds
Sounds that can directly be identified as a certain object,
background sounds and athmos.

c. spoken language and music
Spoken language can be used to illustrate in-game situations,
to generate a menu or to inform the player about things that
are too complex to be “shown” by abstract sounds. Music
is mostly kind of obsolete because it generates “noise” that
distracts the user from the more important signals.

first development and
research

page 8/22

Besides sound, another relevant technology, which is quite
important and useful for audiogames, is the force feedback-
technology. It does not offer the same range of possibilities
as sound but can support and emphasize a particular situa-
tion.

Refining the idea

So, the first content was clear: “Klangpong” should be a
game with a simple concept for two players. Pong, the revo-
lutionary but very simple game, which nearly everybody
knows, provided the groundwork for our concept. Compa-
rable to a tennis game, two rival players try to score points
by hitting a ball in a way that the opponent cannot reach the
ball.

The creation and the definition of the match field and the
whole gameplay is based on sounds and audio effects—it’s
played without a graphical interface so it must be represent-
ed entirely by sounds and be understood by hearing. The
two players are represented by paddles and face each other,
one player on each narrow side of the rectangular playing
field. The ball, boards on the left and right side and the indi-
vidual goal area behind each player are the needed elements.

In this early stage of conception we already decided that our
application needs a menu from which the user can choose
a play mode, and a tutorial, which leads the user into the
world of “Klangpong”.

Interaction

Finding a metaphor for the steering of the paddle was quite
difficult. How can we explain or illustrate the main interac-
tion to someone, who probably has never seen a pong game
or has never played tennis? Thinking about a box, shaped
like a paddle that the user can grab with both hands and
move from side to side, a balance board which transforms
the balance of the user’s body in the paddles movement,
seemed to far fetched and raised another wave of problems.
For example a real “paddle”: This would require the user to
know the maximum angle or position to move the device,
requiring the user to “learn” another layer of sound or an-
other abstract sound, indicating the position.

first development and
research

page 9/22

So we ended up with a steering wheel, which seemed to
fit our requirements best. The maximum position of a not
affixed steering wheel is defined by the anatomy of your
elbow- and wrist joints. Steering to the right requires you
to move your right hand down which implies you to lean a
little to the right, the direction you move the paddle to. Vice
versa when moving to the left. Also for people who know
how to ride a car—turning to the left makes your car to
move to the left.
Due to the position of the players by “really standing” face
to face, it works for both players. All our testers stated that
the idea of the steering wheel worked great for them.

Furthermore the constantly changing in-game situation
require the user to react very quickly which is much easier
with smooth moves of the turning wheel.

To simplify the handling of the Wiimote for blind users
or players, which never used or saw the device before, we
decided that the usage of Nintendo’s Wii Wheel (a little
wheel, which can be combined with the Wiimote) would be
very reasonable for the controlling and understanding of the
gameplay.

So the interaction in “Klangpong” happens on another level
than simple mouse-clicks or tapping hot keys on the key-
board. Therefore, the interaction does not happen stepwise,
but dynamically and not limited.

Interface

“Klangpong” is intended to be played “blind” without see-
ing the screen. Therefore, the interface is invisible – our aim
was to design a strong and understandable audio interface.
Spoken language, sounds, tones, experimentations with
volume, audio channels and audio effects should guide the
user through the menu and the game itself. Of course, we
thought a lot about the question, which sounds are enjoy-
able for the user and which ones hurt or annoy. Also the
question if the sounds can be easily distinguished or not and
if they guide the user succesfully, was discussed frequently.

Thinking about the design of our interface we thought
about audible interfaces, called “Voice User Interfaces”. Do
we have encountered such interfaces yet? The first thing

interaction

Voice User Interfaces

page 10/22

we came up with were car navigation systems. While driv-
ing, the user of the navigation system is unable to focus on
the tiny screen or to wait for response after having made an
input. So the whole system must be able to guide the user
to the selected destination, mainly without looking at the
screen. The direct interaction between the navigation system
and the user is reduced to the setup before starting the ride
and the changes the driver makes while following the navi-
gation systems instructions. The navigation system has a
defensive design, it is not focussed on how to avoid mistakes
by the driver, but how to guide him back on the right route,
whenever he didn’t follow the instructions.

They don’t make use of concrete or abstract sounds—the
interface is designed using spoken language only, like a
 co-driver.

The second “VUIs” we thought about, were telephone
hotlines or telephone shopping systems. We summed up
the experiences, issues and problems with such systems on a
short list (leaving speech recognition out):

users impatience »

awkward language »

 open ended prompts, endlessly repeated confirmation- »
questions

 misleading mental model behind the whole system, »
meaning that the different steps were not in the order
you would expect them.

missing skip functions for returning users »

So we tried to avoid those mistakes by creating an intuitive
structure for both parts of the interface.

Interface part 1 — menu and tutorial
We had to create a mental picture in the user‘s head, which
explains the setup and the whole gameplay, by a spoken
tutorial, which stepwise brings the user closer to the game.
To make it easier to understand, we connected the tutorial
directly to the actions required in-game.
At the beginning of the game the user receives a blindfold,

problems regarding VUIs

page 11/22

headphones and the steering wheel. If the steering wheel has
been picked up, the accelerometer of the Wiimote recog-
nizes the movement and the tutorial starts with a short time
delay.

(If the user has already undergone the tutorial he is able to
skip it by a press of the button.)

Now the Voice User Interface comes in use: the voice tutor
explains, by different scenarios, how to interact with the
steering wheel and how the ball sounds, as he crosses the
field. By combining the single sounds due to the game-situ-
ations, the user should be able to play the game after passing
the tutorial once.
To give an example how one of these scenarios sound like,
this is Step 8 of the tutorial.

Voice: „Your opponent plays the ball quite similiar to you.
Now it‘s time to play some rallys!
Pay attention about the difference in sound, between you,
and your opponent playing the ball.“

The last tutorial step, is about the button, used for skipping
the tutorial and for menu selections, at the rear of the steer-
ing wheel. The voice tutor guides the user to find the button
and press it.

In the main menu, the user navigates through the existing
menu items guided by the voice-over. Each menu item is
read to the user, as he hovers above it.

Interface Part 2 — the game
To find a convincing audio interface, we experimented at
the beginning of the conception with many different sounds
and sound-themes for the elements of the game: The pad-
dles, the ball, the boards and a “miss”-sound that alerts the
player when he has missed the ball.

We analysed these elements and pointed out the details that
have to be transported and communicated by the sounds.
After having set up a working prototype of the game, we
tested the “sound themes” we had developed.

Urban/city/traffic theme
We tried to create an atmosphere which reminds the user of
standing in a crowded city with sounds of cars and traffic.

interface menu/tutorial

page 12/22

The game situation could have been designed like the situa-
tion when a blind person has to cross a street and must pay
attention to all dangers of a crowded street.

Outer space theme
we thought about designing an abstract atmosphere and an
abstract space. So we imagined a sound theme with sounds
that reminds the user of flying through the outer space or
standing in an aerospace port. The used sounds were influ-
enced by typical effects of science-fiction like laser-sounds
or energy fields.

Forces of nature/natural elements theme
the imagination of giving the user the impression of playing
with thunder, wind or lightnings was very exciting for us.
As a next step, the user could have created earthquakes or
typhoons during the game.

Conversation/emotion theme
this theme moved away from the idea to use real object in
the game itself. Instead of playing with a ball for example,
we figured out that it could be interesting to play with
“emotions”. The users hit “laughter”, “screams” or spo-
ken words – instead of a rally, a conversation between the
players develops. Naturally, it was more a conceptional and
experimental idea.

Water theme
a discussion, which sounds are enjoyable and comfortable
for our users, led us to a water theme. The idea was to cre-
ate a calm and relaxing atmosphere for the players by using
slight bubbling water sounds or a light waterfall sound.

Ice hockey/shuffle board theme
our “realistic” theme. When we thought about playability
and understanding of the game situation, we imagined that a
realistic theme, with realistic sounds, which the user knows
from sports or arcade-halls, could enhance the flow of the
game. The whole theme had an analogue sound impres-
sion, which helped us finding an adequate sound theme that
sounded not too artificial.

audio schemes

page 13/22

page 14/22

After our first tests in the design class we decided on the
realistic theme, which was the most understandable, play-
able and distinguishable.

Aside from the design of the sound interface, we thought
right from the beginning about a visualization of the game.
Of course, the game itself can not be seen by the users, but
spectators would be annoyed very quick, if there would
be no visualization at all. But we were not sure about the
way we could design the visual aspect. One suggestion was
to visualize the game analogue to those shuffle boards we
know from arcade-halls. Another idea was to design the
visualization very abstract, like a wormhole, with changing
colors and forms, which represent the process of the game.

Since we settled for a realistic sound theme, we decided to
design a rather realistic visualization, which fits to the used
sounds. While designing the visualization, we were mainly
inspired by the looks of existing air-hockey tables, billard
tables and bowling alleys.

Design concept

3D-Models
The table and bowling ball (Puck) models, where build with
the open source subdivision modeler Wings3D. Wings3D
can only do polygonal modeling and lacks more advanced
features such as NURBS, Patches and other functionality
often found in other 3D packages such as Blender, Max,
Maya or Lightwave. However, this lack of features provides
a fairly shallow learning curve.

The UV-unwrapping functions of Wings3D are often a bit
too basic, but still good enough for our purposes.

decision on audio themes

With Wings3D we were basically able to learn the program
and build and texture both models over the course of just
two days. The finished models could be easily exported in
OBJ format and were as good as ready for use in Process-
ing. Only the texture paths needed to be adjusted to work
properly, which wasn’t a problem, since the 3D vertex data
(OBJ) and corresponding material data (MTL) are stored in
plain text format.
Most textures were made out of photo sources an post proc-
essed in Photoshop. The lamp texture was borrowed from a
game.

design concept

page 15/22

Wings3D environment with the pong-table

Technical Concept

Development Environment
Since KlangPong doesn’t demand much from the hard-
ware and it needed to be finished in a timely manner we
choose the Processing environment to implement our game.
In hindsight, this decision was a two-edged sword. The
Processing API provides rich features to do about anything
you normally would want to do in fast and easy way. But
as we went further and further we needed more uncommon
features and encountered a few Bugs in the API, which we
had to work around. This sadly was a very time consum-
ing task. In fact, we found that Java in general still has
many problems when working on applications that demand
realtime responses and handle with relatively low level re-
sources. Still, we managed to put everything together as we
wanted to. It’s doubtful if any other API or programming
language would’ve brought better results.

Sound
The most important aspect of our game is of course the
sound. We needed a way to produce a convincing stereoph-
ony and make distances and speeds audible. The OpenAL
API is the de-facto standard for producing high quality
3D Sound for games. It provides fast and easy access to the
sound hardware, and allows you to define a virtual room in
which the listener and multiple sound sources can be placed.

technical concept

page 16/22

Wings3D environment with the model of the ball

The Java OpenAL binding, which we used for our project,
allowed us to directly talk to the API.

All sound effects, like the pucks moving noise, collision
with paddles or the walls, are cached and kept in memory,
as the game starts. All commentary, such as the current
score, spoken menu descriptions and the tutorial voice, are
loaded in a sound queue on demand. This queue allowed us
to easily chain speech samples to construct sentences.

Despite Javas automatic memory management, sound buff-
ers are not released automatically by the Garbage Collector,
but had to be deleted by hand in the objects destructor. Fur-
thermore, we had to call Javas Garbage Collector in several
places manually, to ensure that sound sources are freed,
before new ones are created. Otherwise Java would use up
all hardware sound channels with long dead buffers.

Wiimote / Blue Tooth
To Access all functions of the Wiimote, we used the MoteJ
library. It provides a fairly low level access to the Wiimote’s
accelerometer and buttons.

MoteJ can work with several different Blue Tooth libraries
to talk to the Wiimote. The BlueCove library was chosen
for this task, because it provides robust access to the Blue
Tooth stack on all 3 platforms (Windows, Mac and Linux).

Graphics
For our visuals we choose the OpenGL rendering API and
OBJLoader library to load and draw 3D-models into our
scene. This combination proved to be problematic one,
because of Processing Bug. We actually needed to adjust the
OBJ Loader library to work around it.

OBJ is a common format, supported by many 3D graphics
applications, to represent raw vertex positions as well as UV
texture coordinates. Since OBJ files store data as plain text,
they are easy to debug, but harder to parse than binary data.
However the syntax is quite simple compared to the more
powerful but overly verbose ASE format.

OpenGL allowed us to draw huge numbers of textured and
anti-aliased polygons in each frame. Because, compared to

final technical concept

page 17/22

modern games, our 3D scene is quite simple, we didn’t need
implement display lists or care about polygon batches. Nor-
mally you would want to bind a texture, draw all polygons
that share this texture and repeat for all remaining textures.
Instead, we just bound the texture for each polygon sepa-
rately just prior to drawing it. This is inefficient, but the
performance loss was irrelevant for our scene.

We didn’t use any OpenGL lighting functionality. All
lights and shadows are pre “baked” into the textures. The
dynamic shadows of the Puck and Paddles are faked with
semi-transparent textures.

Networking
To provide a multiplayer mode where two players could
compete against each other, we needed a networked mode.
Java provides extensive networking functionality, which
is capsuled in Processings Client and Server classes. Sadly,
these classes are not very well thought out, so we partly had
to descent into Javas socket implementation to get it work-
ing properly.

A snapshot of the current game state is constructed by the
client and the server every 20 milliseconds and shared over
a TCP/IP connection. A fast UDP connection was con-
sidered, but ultimately dropped in favor of TCP/IP, as it
guarantees to never lose a packet and maintain packet order.
Since there is absolutely no random factor, other than the
pucks starting angle, we decided to synchronize the com-
plete game state only when something important happens.
The opponents Paddle position is updated with each re-
ceived snapshot, whereas the pucks position, speed and
angle is only adapted when the opponent hits or misses the
puck, or the client starts the game.

So the pucks physics and collision with the local players
Paddle is computed completely client side. This ensured a
very fluent and precise gaming experience, even when play-
ing in high latency networks.

Code Structure
For the most basic functionality of the game we build three
classes: Game, Puck and Paddle.

final technical concept

page 18/22

The Game class defines the playing area and its size. It cre-
ates and hosts an instance of the Puck class, as well as two
instances of the Paddle class. The Game class’ most impor-
tant methods are update and draw, which are called peri-
odically by Processings draw function. These two methods
in turn call the update and draw methods of the Puck and
Paddle objects.

Also the score for each player is kept in the respective Pad-
dle object, all changes in the score run through the Game
object. The same applies, when the Puck hits or misses a
Paddle: The physical response of the Puck is managed in the
Puck object itself, whereas the Game object handles stuff
like sending a Snapshot over the network etc.

Class overview
To reproduce each of our game types we constructed several
different Game classes, all derived from a basic Game type.
Furthermore, these different classes host different types of
Paddle objects, i.e. a Paddle controlled by the computer, by
a human or by the network.

For a networked game we also had to distinguish between
the server and the client, as the client directly connects to a
host and the server listens on a specific port for clients. Still,
most of the network functionality, such as constructing,
sending, receiving and processing Snapshots works the same
on client and server. This left us with the following class
structure for our game types and Paddles.

final technical concept

page 19/22

Game

Game_Demo Game_Network

Game_Network_ServerGame_Network_Client

Game_Tutorial

Paddle

Paddle_Computer Paddle_Human Paddle_Network

Game
Hosts a Paddle_Human and a Paddle_Computer object and
provides the most basic game. The game is finished when
one player reaches the score of 11.

Game_Demo
Hosts two Paddle_Computer objects. The camera is rotated
around the table. This non-interactive game type advertises
the game itself when in idle mode. The demo game automat-
ically ends as soon as someone picks up the Wiimote.

Game_Tutorial
Hosts a Paddle_Human and a Paddle_Computer object, but
does not provide regular game behaiviour. Instead, a spoken
tutorial can be heard, while the player can try out the game
in severall steps.

Game_Network
Host a Paddle_Human and a Paddle_Network object.
Snapshots are sent over the network every 20 milliseconds.
Incoming snapshots update the opponents Paddle posi-
tion, or the whole game state, if something special happened
(game start, score or miss).

final technical concept

page 20/22

The Game_Network_Client and Game_Network_Server
classes are derived from the Game_Network class and only
differ in how they connect to each other over the network.

Snapshot
The Snapshot class is also closely related to networked
game classes. It stores a complete game state wich can be
converted into a byte stream, ready to be sent. Addition-
ally, a Snapshot can also be constructed from a byte stream
received from the network.

Paddle
The Paddle classes either accept input from the controller
(Paddle_Human), or move autonomously (Paddle_Com-
puter). The Paddle_Network class is updated from within
the Game_Network object and therefore doesn’t do much
despite of drawing itself.

Puck
The Puck class handles all the physics of the itself. It bounc-
es back from walls and Paddles and plays the appropriate
sound effects. The puck behaves exactly the same in all game
modes.

Controller
We also have Controller_Wiimote and a Controller_Mouse
class; both derived from a basic Controller class. This al-
lowed us to easily switch between mouse and Wiimote
mode for testing purposes. The Controller_Mouse class is
now unused.

MainMenu
The MainMenu allows the player to switch between a game
against the computer, or a game against another player
over the network. The MainMenus update method returns
a Game object or NULL, if no game type has been cho-
sen yet. Additionally, this method returns a Game_Demo
 object, if the controller has been idle for 20 seconds.

final technical concept

page 21/22

page 22/22

The currently selected game type is explained with speech
samples.

Utility classes
Additionally to all of these classes, we also build some util-
ity classes for sound sources and sound queues and adapted
a small library for working with JOAL from the Processing.
org forums.
A Vector2D and IntBytes class was created solely for con-
venience. Because of a Processing bug, we also had to build
a ImageManager class that keeps track of all loaded textures.

final technical concept

page 22/22

